Muonium Chemistry at Diiron Subsite Analogues of [FeFe]‐Hydrogenase
نویسندگان
چکیده
The chemistry of metal hydrides is implicated in a range of catalytic processes at metal centers. Gaining insight into the formation of such sites by protonation and/or electronation is therefore of significant value in fully exploiting the potential of such systems. Here, we show that the muonium radical (Mu. ), used as a low isotopic mass analogue of hydrogen, can be exploited to probe the early stages of hydride formation at metal centers. Mu. undergoes the same chemical reactions as H. and can be directly observed due to its short lifetime (in the microseconds) and unique breakdown signature. By implanting Mu. into three models of the [FeFe]-hydrogenase active site we have been able to detect key muoniated intermediates of direct relevance to the hydride chemistry of these systems.
منابع مشابه
On the structure of a proposed mixed-valent analogue of the diiron subsite of [FeFe]-hydrogenase.
We show that a dinuclear assembly apparently providing the first example of a synthetic molecule exhibiting key features of the diiron subsite of [FeFe] hydrogenase, viz. CO-bridging of a coordinatively unsaturated, dithiolate-bridged mixed-valence diiron centre, is in fact a diamagnetic tetranuclear complex.
متن کاملResin-bound models of the [FeFe]-hydrogenase enzyme active site and studies of their reactivity.
The immobilization of synthetic analogues of the [FeFe]-hydrogenase, [FeFe]H(2)ase, enzyme active site on polyethyleneglycol-rich polystyrene beads is described. Using the reactivity of the amine termini of the PEG chains with carboxylates incorporated into (mu-SRS)[Fe(CO)(3)](2) or (mu-SR)(2)[Fe(CO)(3)](2) derivative, nu(CO)IR signatures can be used to interrogate the structure and properties ...
متن کاملEncapsulating Subsite Analogues of the [FeFe]-Hydrogenases in Micelles Enables Direct Water Interactions.
Encapsulation of subsite analogues of the [FeFe]-hydrogenase enzymes in supramolecular structures has been shown to dramatically increase their catalytic ability, but the molecular basis for this enhancement remains unclear. We report the results of experiments employing infrared absorption, ultrafast infrared pump-probe, and 2D-IR spectroscopy to investigate the molecular environment of Fe2(pd...
متن کاملArtificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster.
Hydrogenases are enzymes that catalyze the oxidation of H2 as well as the reduction of protons to form H2. The active site of [FeFe] hydrogenase is referred to as the "H-cluster" and consists of a "classical" [4Fe-4S] cluster connected via a bridging cysteine thiol group to a unique [2Fe]H sub-cluster, containing CN(-) and CO ligands as well as a bidentate azadithiolate ligand. It has been rece...
متن کاملProtonation of a subsite analogue of [FeFe]-hydrogenase: mechanism of a deceptively simple reaction revealed by time-resolved IR spectroscopy.
We provide the first detailed time-resolved mechanistic information on the protonation of a model of the subsite of [FeFe]-hydrogenase, [Fe2(mu-pdt)(CO)4(PMe3)2]; the deceptively simple stoichiometric reaction is shown to be limited by the rate of protonation of the basal-apical isomer followed by its rearrangement to the transoid basal form.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 55 شماره
صفحات -
تاریخ انتشار 2016